If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2=-6v+8
We move all terms to the left:
3v^2-(-6v+8)=0
We get rid of parentheses
3v^2+6v-8=0
a = 3; b = 6; c = -8;
Δ = b2-4ac
Δ = 62-4·3·(-8)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{33}}{2*3}=\frac{-6-2\sqrt{33}}{6} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{33}}{2*3}=\frac{-6+2\sqrt{33}}{6} $
| 10k^2-7k=0 | | 6(x=3)-6=24 | | 14+8x=6x-2 | | 3x-1=9x+12 | | 3u+14=10u | | x*6/5=1-x/6 | | 8^(2x-10)=64 | | -1/3x^2-50/3x-40=0 | | 25^x+3=1/5 | | 0.7n+5=16.34 | | 4^3x-3=1 | | 3(x-6)=2(x=4) | | k/0.1=2.44 | | 5u=11 | | 10c=11 | | (x-9)/5+8=2x-28 | | 10x^+12x+2=0 | | 3^-2x+3=1/27 | | 12-6x=x+5x-10 | | 3t–5=4+4(3-t) | | Y=-12x-20 | | F=9/5{k-273.15}+32 | | K425+k=−3211 | | x=12-16 | | 5(z-3)+43=3(4-z) | | 4(x-2)^2-(x-3)^=0 | | 12=-16+x | | 12=4(-4)+x | | ((4x)(3))+30x+8=34 | | d^2-12d=28 | | 2(x-5)=10-6x | | 0=40-10t |